
Discrete Optimization
ISyE 6662 - Spring 2023

Homework 1

Instructor: Alejandro Toriello
TA: Filipe Cabral

January 23, 2023.

1. Let A ∈ Zn×n be a square integer matrix, and suppose the largest absolute value of any entry in A is a. Prove
that |det(A)| ≤ (an)n.

Answer: We know that the determinant function is given by det(A) =
∑
σ∈Sn

sgn(σ)a1,σ(1) · · · an,σ(n),
where Sn is the set of all permutations σ : {1, . . . , n} → {1, . . . , n} and sgn(σ) ∈ {−1, 1} is the sign of
the permutation σ. Thus, the following inequalities hold:

|det(A)| ≤
∑
σ∈Sn

|a1,σ(1) · · · an,σ(n)| ≤
∑
σ∈Sn

an ≤ n!an ≤ nnan,

where the first follows from the triangular inequality, the second is because a is the largest absolute entry
of A, and the third is because the number of all possible permutations of n objects is n!.

2. Let P = {x ∈ Rn : Ax ≤ b} be a non-empty polyhedron. Prove the following:

a) P contains a line if and only if Ax = 0 has a non-zero solution.

Answer: Suppose that P contains a line, i.e., there exists d ∈ Rn\{0} and x ∈ P such that x + td
belongs to P for all t ∈ R. Suppose that (Ad)i 6= 0 for some i = 1, . . . ,m. Let tα = α · (Ad)i and note
that

bi ≥ (Ax+ tαAd)i = (Ax)i + α · (Ad)2i , ∀α > 0.

However, this is a contradiction since (Ax)i + α · (Ad)2i tends to +∞ as α goes to +∞. Thus, d is a
non-zero solution to Ax = 0.

Conversely, suppose that Ax = 0 has a non-zero solution d ∈ Rn\{0}. Then, x + td belongs to P for
every x ∈ P and t ∈ R because

A(x+ td) = Ax+ t · Ad︸︷︷︸
=0

= Ax ≤ b.

b) P is unbounded if and only if Ax ≤ 0 has a non-zero solution.

Answer: Suppose that P is unbounded, that is, there exists d ∈ Rn\{0} and x ∈ P such that x + td
belongs to P for all t ∈ R+. Here the scalar t is non-negative instead of any real number. The remaining
argument is similar.

Suppose that (Ad)i > 0 for some i = 1, . . . ,m. Let tα = α · (Ad)i and note that

bi ≥ (Ax+ tαAd)i = (Ax)i + α · (Ad)2i , ∀α > 0.
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However, this is a contradiction since (Ax)i + α · (Ad)2i tends to +∞ as α goes to +∞. Thus, d is a
non-zero solution to Ax ≤ 0.

Conversely, suppose that Ax ≤ 0 has a non-zero solution d ∈ Rn\{0}. Then, x + td belongs to P for
every x ∈ P and t ∈ R+.

3. Recall that the convex hull of a set of points S is the set of points that can be obtained as a convex combination
of (finitely points in S, or equivalently, it is the smallest convex set containing S. Let S = {x ∈ Rn :

∑n
i=1 x

2
i ≤

ρ2} for some ρ ≥ 0. Is conv(S ∩Zn) a polyhedron? What about conv(S ∩ (R×Zn−1)), conv(S ∩ (R2×Zn−2)),
and so forth? Justify your answer.

Answer: We know that a convex combination of union of polytopes is also a polytope (it is just the convex
combination of the union of extreme points). Then, we have the following cases:

(i) S ∩ Zn is a finite set, so conv(S ∩ Zn) is a polytope.

(ii) S ∩ (R× Zn−1) is a finite union of line segments, so conv(S ∩ (R× Zn−1)) is also a polytope.

(iii) S∩ (Rk×Zn−k) is a finite union of k-dimensional balls for 2 ≤ k ≤ n, which implies that conv(S∩ (Rk×
Zn−k)) is not a polytope. For instance, consider ρ = 1, n = 3 and k = 2. Then,

S ∩ (R2 × Z) = {(0, 0,−1)} ∪ (C2 × {0}) ∪ {(0, 0, 0)},

where C2 is the unit circle given by C2 = {(x1, x2) ∈ R2 : x21 + x22 ≤ 1}. Thus, the convex set
conv(S ∩ (R2 × Z)) is given by the union of two cones connected by the circular base, i.e.,

conv(S ∩ (R2 × Z)) = {(x1, x2, x3) ∈ R3 : x21 + x22 + |x3| ≤ 1}.

4. Let P ⊆ Rn be a polytope given as the convex hull of a set of points, P = conv{x1, . . . , xm}. Let c1, . . . , ck ∈ Rn

be a set of objective vectors.

a) Write a linear program that solves minx∈P maxl=1,...,k c
lx.

Answer: For a fixed x ∈ P , the term maxl=1,...,k c
lx can be described as the maximum of cx over all

the objective costs c subject to c ∈ conv{c1, . . . , ck}. We conclude by taking the dual of this problem
and grouping the minimization problems. Indeed,

min
x∈P

max
l=1,...,k

clx = min
x∈P

max
λ,c

cx

s.t.
∑k
l=1 λlc

l = c,∑k
l=1 λl = 1,

λ ≥ 0, c ∈ Rn,
(dual)

= min
x∈P

min
γ,π

γ

s.t. clπ + γ ≥ 0, l = 1, . . . , k,

−π = x,

π ∈ Rn, γ ∈ R,

= min
α,x,γ

γ

s.t. −clx+ γ ≥ 0, l = 1, . . . , k,

x =
∑m
i=1 αixi,∑m

i=1 αi = 1,

x ∈ Rn, γ ∈ R, α ≥ 0.

b) Explain how you can efficiently solve maxx∈P maxl=1,...,k c
lx.
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Answer: Note that the following identities hold:

max
x∈P

max
l=1,...,k

clx = max
l=1,...,k

max
x∈P

clx = max
i=1,...,m,
l=1,...,k

clxi.

Thus, we can find the largest inner product clxi among l = 1, . . . , k and i = 1, . . . ,m.

Now suppose P is given by a set of linear inequalities, P = {x ∈ Rn : Ax ≤ b}.
c) Repeat question (a).

Answer: A similar idea applies to this question.

min
x∈P

max
l=1,...,k

clx = min
x∈P

min
γ

γ

s.t. γ ≥ clx, l = 1, . . . k,

γ ∈ R,

= min
x∈P

min
γ

γ

s.t. γ ≥ clx, l = 1, . . . k,

Ax ≤ b,
x ∈ Rn, γ ∈ R.

d) Write a mixed-integer linear program that solves maxx∈P maxl=1,...,k c
lx.

Answer: Roughly speaking, we create k copies of the polytope P and use a binary variable zl ∈ {0, 1}
to indicate the copy we refer. Indeed,

max
x∈P

max
l=1,...,k

clx = maxx,xl,zl

∑k
l=1 c

lxl

s.t. Axl ≤ zlb, l = 1, . . . , k,∑k
l=1 zl = 1,

x, xl ∈ Rn, z ∈ {0, 1}k.

Because P is a polytope (bounded polyhedron) the only solution to Ax ≤ 0 is the zero vector. Thus, xl
belongs to P if zl is 1 and xl is the zero vector if zl is 0.

5. Consider an undirected graph (N,E) with associated edge weights w ∈ RE , each of which may be positive,
negative or zero. For each of the following problems, give an integer programming formulation and prove its
correctness.

a) For a given subset of nodes S ⊆ N , find the maximum-weight subtree of the graph that contains S and
may or may not contain other nodes.

Answer: Let xe ∈ {0, 1} be the variable that indicates with 1 if the edge e ∈ E belongs to our subgraph
and 0 otherwise. Let yv be the indicator variable of a node v ∈ N of our subgraph. First, we require
that every node in S belongs to the subgraph, i.e., yv = 1 for every v ∈ S. Also, an edge belongs to the
subgraph if both endpoint nodes belong to it, that is, xuv ≤ yu and xuv ≤ yv, for all u, v ∈ V such that
uv ∈ E.

To enforce an acyclic subgraph we consider the cycle elimination constraint
∑
e∈E(U) ≤ |U | − 1, for all

U ⊂ N such that U 6= ∅ and U 6= N . In particular, the resulting subgraph is a forest (union of trees).
Recall that a forest with n nodes and m connected components have n −m edges. So, we include the
constraint

∑
e∈E xe =

∑
v∈N yv − 1 to enforce a subtree, that is, only one connected component. Below
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we have the complete formulation:

maxx,y
∑
e∈E wexe

s.t.
∑
e∈E(U) ≤ |U | − 1, U ⊂ N : U 6= ∅, N,∑
e∈E xe =

∑
v∈N yv − 1,

xuv ≤ yu, xuv ≤ yv, u, v ∈ V ; uv ∈ E
yv = 1, v ∈ S,
xe ∈ {0, 1}, e ∈ E.

b) For a given subset S ⊆ N , find the maximum-weight subgraph in which nodes in S have odd degree and
nodes in N \S have even degree (including possibly zero).

Answer: We create an auxiliary variable zv ∈ Z+ for each vertex v ∈ N to represent even and odd
degrees, see the formulation below:

maxx
∑
e∈E wexe

s.t.
∑
e∈δ(v) xe = 2zv + 1, v ∈ S,∑
e∈δ(v) xe = 2zv, v ∈ N\S,

xe ∈ {0, 1}, zv ∈ Z+, v ∈ N, e ∈ E.

c) For a positive integer vector b ∈ ZN+ , find the maximum-weight graph in which node i ∈ N has degree
bi.

Answer: This formulation is similar to the one in (b) but without the auxiliary variable:

maxx
∑
e∈E wexe

s.t.
∑
e∈δ(v) xe = bv, v ∈ N,

xe ∈ {0, 1}, e ∈ E.

d) Find the subset S ⊆ N that maximizes the total weight of edges in δ(S). Recall that δ(S) ⊆ E is the
set of edges with exactly one endpoint in S.

Answer: Let xe ∈ {0, 1} be the indicator variable of edge e in a cutset δ(S) and let yv be the indicator
variable of a node v in S. By definition of cutset, the endpoint nodes u and v from an edge uv ∈ δ(S)
are such that u ∈ S and v ∈ N\S. Thus, our constraints must enforce that:

i. If (yu, yv) = (1, 1) or (0, 0) then xuv = 0.

ii. If (yu, yv) = (1, 0) or (0, 1) then xuv = 1.

These properties can be enforced by the constraints xuv ≤ yu + yv and xuv ≤ 2− yu − yv for all uv ∈ E.
Below we present the formulation for the maximum total weight of edges in δ(S) over all S ⊂ N :

maxx
∑
e∈E wexe

s.t. xuv ≤ yu + yv, uv ∈ E,
xuv ≤ 2− yu − yv, uv ∈ E,
xe ∈ {0, 1}, yv ∈ {0, 1}, v ∈ N, e ∈ E.

6. You are organizing a single-track workshop with n speakers. Your lecture room is available from time 0 to
T . Each speaker i has specified the length of their lecture, li. Furthermore,because these are prima donna
academics, they have also given you an earliest and latest time they want to start, ai ≤ bi. (You may assume
all numbers are integers.)
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a) Write a MIP formulation to determine if you can feasibly arrange the lectures in the room without any
overlap. Your formulation should include continuous variables ti ∈ [0, T ] representing lecture i’s start
time, and may include other variables.

Answer: Denote by [p : q] the set of consecutive integer from p to q. Let l0 be equal to 0 and let bi be
equal to min(bi, T − li). Consider the auxiliary variable zij ∈ {0, 1} that indicates if lecture j starts just
after lecture i. Thus, our formulation is given below:

mint,z 0

s.t. ai ≤ ti ≤ bi, i ∈ [1 : n], (Start time bounds)

tj ≥ ti + li −M(1− zij), i ∈ [0 : n], j ∈ [1 : n], (Time ordering)∑n
i=0 zij = 1, j ∈ [1 : n], (Exact one lecture before)∑n
j=1 zij ≤ 1, i ∈ [1 : n], (At most one lecture after)

t0 = 0, zii = 0, i ∈ [1 : n], (Variable elimination)

ti ≥ 0, zij ∈ {0, 1}, i ∈ [0 : n] j ∈ [1 : n].

b) Because all parameters are integers, we may assume all lectures start at integer times. Write a second
formulation using binary indicator variables xit ∈ {0, 1} for i = 1, . . . , n and t = 0, . . . , T , where xit = 1
means lecture i starts at time t.

Answer: Let bi be equal to min(bi, T − li). The formulation in this case is given as

mint,z 0

s.t.
∑bi
t=ai

xit = 1, i ∈ [1 : n], (Start time bounds)

xit = 0, i ∈ [1 : n], t ∈ [0 : T ]\[ai : bi], (Out of bound starts)∑min(T,t+li−1)
τ=t

∑n
j=1
j 6=i

xjτ ≤ n · (1− xit), i ∈ [1 : n], t ∈ [0 : T ], (Conflict elimination)

xit ∈ {0, 1}, i ∈ [1 : n], t ∈ [0 : T ].

Given a lecture i ∈ [1 : n], the conflict elimination constraint prevents any other lecture j 6= i from start
in the time window from t to t+ li − 1 if the lecture i have started at time t, i.e., xit = 1.
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