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ISyE 6662 - Spring 2023
Homework 1

Instructor: Alejandro Toriello
TA: Filipe Cabral

January 23, 2023.

1. Let A € Z™*™ be a square integer matrix, and suppose the largest absolute value of any entry in A is a. Prove
that | det(A)| < (an)™.

Answer: We know that the determinant function is given by det(A) = > g sgn(0)ai 1) an.o(n),
where S, is the set of all permutations o : {1,...,n} — {1,...,n} and sgn(c) € {—1,1} is the sign of
the permutation o. Thus, the following inequalities hold:

|det(A)] < Z |01,0(1) ** Ono(n)] < Z a” < nla™ < n"a”,
oES, gES,

where the first follows from the triangular inequality, the second is because a is the largest absolute entry
of A, and the third is because the number of all possible permutations of n objects is n!.

2. Let P = {z € R™: Az < b} be a non-empty polyhedron. Prove the following:

a)

P contains a line if and only if Az = 0 has a non-zero solution.

Answer: Suppose that P contains a line, i.e., there exists d € R*\{0} and = € P such that x + ¢d
belongs to P for all t € R. Suppose that (Ad); # 0 for some ¢ = 1,...,m. Let t, = - (Ad); and note
that

b; > (Az +toAd); = (Ax); + a - (Ad)?, Ya > 0.

However, this is a contradiction since (Ax); + o - (Ad)? tends to +o0o as a goes to +oo. Thus, d is a
non-zero solution to Az = 0.

Conversely, suppose that Az = 0 has a non-zero solution d € R"\{0}. Then, x + td belongs to P for
every x € P and t € R because

A(x +td)=Ax +t- Ad = Az <b.

=0
P is unbounded if and only if Az < 0 has a non-zero solution.

Answer: Suppose that P is unbounded, that is, there exists d € R"\{0} and « € P such that x + td
belongs to P for all t € R;.. Here the scalar ¢ is non-negative instead of any real number. The remaining
argument is similar.

Suppose that (Ad); > 0 for some i = 1,...,m. Let ¢, = o - (Ad); and note that

b; > (Az +toAd); = (Ax); + a - (Ad)?, VYa > 0.



However, this is a contradiction since (Az); + « - (Ad)? tends to +oo as « goes to +o0o. Thus, d is a
non-zero solution to Ax < 0.

Conversely, suppose that Az < 0 has a non-zero solution d € R"\{0}. Then, x + td belongs to P for
every ¢ € P and t € R;.

3. Recall that the convex hull of a set of points .S is the set of points that can be obtained as a convex combination
of (finitely points in S, or equivalently, it is the smallest convex set containing S. Let S = {z € R™ : " | x? <
p*} for some p > 0. Is conv(SNZ") a polyhedron? What about conv(SN (R x Z"71)), conv(SN (R? x Z"~2)),
and so forth? Justify your answer.

Answer: We know that a convex combination of union of polytopes is also a polytope (it is just the convex
combination of the union of extreme points). Then, we have the following cases:

(i) SNZ™ is a finite set, so conv(S NZ") is a polytope.
(i) SN (R x Z"~1) is a finite union of line segments, so conv(S N (R x Z"~1)) is also a polytope.
(iii) SN (R x Z"~*) is a finite union of k-dimensional balls for 2 < k < n, which implies that conv(S N (R* x
Z"=*)) is not a polytope. For instance, consider p = 1, n = 3 and k = 2. Then,

SN (R*x Z) = {(0,0,-1)} U (C2 x {0}) U{(0,0,0)},

where Cy is the unit circle given by Co = {(z1,22) € R? : 22 + 23 < 1}. Thus, the convex set
conv(S N (R% x Z)) is given by the union of two cones connected by the circular base, i.e.,

conv(S N (R? x Z)) = {(z1,z2,73) € R®: 2% + 23 + |z3] < 1}.

4. Let P C R™ be a polytope given as the convex hull of a set of points, P = conv{z1,...,z,}. Letcr,...,cp € R?
be a set of objective vectors.

a) Write a linear program that solves ming,ecp maxj—1_ .

Answer: For a fixed z € P, the term max;—, clz can be described as the maximum of cx over all

the objective costs ¢ subject to ¢ € conv{c!,...,c*}. We conclude by taking the dual of this problem
and grouping the minimization problems. Indeed,

min max cx = minmax cz
z€P l=1,...,k z€P A

s.t. Zle Nl = e,
Zf:l =1,

A>0, ceRY,
(dual) . .
=" minmin 7y
zeP v,7
st. cr4+v>0, l=1,...k,
-7 =2,
meR™ ~v€R,
= min v
o,x,y
st. —cxz+v>0, l=1,...,k,

x =300 o,
Yt ai=1,
rzeR" veR, a>0.

b) Explain how you can efficiently solve max,cp max;—1

yeeey



Answer: Note that the following identities hold:

max max ¢z = max maxce= max ;.
zeP I=1,...,k l=1,....k xz€P i=1,...,m,
I=1,...k
Thus, we can find the largest inner product ¢'z; among l =1,...,kand i =1,...,m.

Now suppose P is given by a set of linear inequalities, P = {x € R™ : Ax < b}.
c) Repeat question (a).

Answer: A similar idea applies to this question.

l

min max ¢z = minmin vy
z€P1=1,...k zeP v
st. y>dx, 1=1,...k,
v ER,
= minmin
zeP v 7
st. v > cdua, l=1,...k,
Ax < b,
zeR" veR.

d) Write a mixed-integer linear program that solves max,ecp maxj=1__ .

Answer: Roughly speaking, we create k copies of the polytope P and use a binary variable z; € {0, 1}
to indicate the copy we refer. Indeed,

! koo
max max ¢ = MaXyga s ;.1 CI

zeP I=1,....k
s.t. Ax; < z;b, l=1,...,k,

Zle 2] = 17
z,x, €R, z € {0,1}*.

Because P is a polytope (bounded polyhedron) the only solution to Az < 0 is the zero vector. Thus, x;
belongs to P if z; is 1 and x; is the zero vector if z; is 0.

5. Consider an undirected graph (NN, F) with associated edge weights w € R¥, each of which may be positive,
negative or zero. For each of the following problems, give an integer programming formulation and prove its
correctness.

a) For a given subset of nodes S C N, find the maximum-weight subtree of the graph that contains S and
may or may not contain other nodes.

Answer: Let z. € {0,1} be the variable that indicates with 1 if the edge e € E belongs to our subgraph
and 0 otherwise. Let y, be the indicator variable of a node v € N of our subgraph. First, we require
that every node in S belongs to the subgraph, i.e., y, = 1 for every v € S. Also, an edge belongs to the
subgraph if both endpoint nodes belong to it, that is, T, < Y, and xy, < y,, for all u,v € V such that
uv € B.

To enforce an acyclic subgraph we consider the cycle elimination constraint ) BU) < |U| — 1, for all
U C N such that U # () and U # N. In particular, the resulting subgraph is a forest (union of trees).
Recall that a forest with n nodes and m connected components have n — m edges. So, we include the
constraint ., e = Y, cn Yo — 1 to enforce a subtree, that is, only one connected component. Below



we have the complete formulation:

MaXey Dccp Wele

st Yoeme < IUI-1, UcCN:U+0,N,
decrTe =D pen Yo — 1,
Tuw S Yus  Tuv < Yo, u,v€eV; uwwek
Yo = 1, v E S,

z. €{0,1}, e€ E.

b) For a given subset S C N, find the maximum-weight subgraph in which nodes in S have odd degree and
nodes in N \ S have even degree (including possibly zero).

Answer: We create an auxiliary variable z, € Z, for each vertex v € N to represent even and odd
degrees, see the formulation below:

maxXy Y .cpWele
s.t. Zeeé(v) Te =2z, +1, veES,
D ecsw) Te = 220, v € N\S,
ze €{0,1}, 2, €Zy, vEN, e€FE.

¢) For a positive integer vector b € Zﬂ\r’ , find the maximum-weight graph in which node ¢ € N has degree
b;.

Answer: This formulation is similar to the one in (b) but without the auxiliary variable:

max; Y .cpWele
s.t. Zeeé(v) Te =by, VEN,
ze € {0,1}, ee€E.

d) Find the subset S C N that maximizes the total weight of edges in 6(S). Recall that 6(S) C FE is the
set of edges with exactly one endpoint in S.

Answer: Let z. € {0,1} be the indicator variable of edge e in a cutset §(S) and let y, be the indicator
variable of a node v in S. By definition of cutset, the endpoint nodes v and v from an edge uv € 6(5)
are such that v € S and v € N\S. Thus, our constraints must enforce that:

i If (yu,ys) = (1,1) or (0,0) then xz,, = 0.
ii. If (yu,ys) = (1,0) or (0,1) then z,, = 1.

These properties can be enforced by the constraints x,, < Yy, + ¥, and x,, < 2 — 1y, —y, for all uv € E.
Below we present the formulation for the maximum total weight of edges in §(S) over all S C N:

max, Y .cpWele
st Tuw < Yu + Yo, uwv € E|
Tuv 2 — Yy — Yo, w € K,
z. €{0,1}, y, € {0,1}, vEN, e€ E.

6. You are organizing a single-track workshop with n speakers. Your lecture room is available from time 0 to
T. Each speaker i has specified the length of their lecture, I;. Furthermore,because these are prima donna
academics, they have also given you an earliest and latest time they want to start, a; < b;. (You may assume
all numbers are integers.)



a) Write a MIP formulation to determine if you can feasibly arrange the lectures in the room without any
overlap. Your formulation should include continuous variables ¢; € [0, 7] representing lecture i’s start
time, and may include other variables.

Answer: Denote by [p : q] the set of consecutive integer from p to q. Let Iy be equal to 0 and let b; be
equal to min(b;, T —I;). Consider the auxiliary variable z;; € {0, 1} that indicates if lecture j starts just
after lecture ¢. Thus, our formulation is given below:

ming , 0 ~
st. a; <t; <b, i€[l:n], (Start time bounds)
ti>ti+1; —M(1—z2;), t€[0:n], je[l:n], (Time ordering)
S oz =1, jel:n], (Exact one lecture before)
Z?zl zij <1, i€[l:n], (At most one lecture after)
to=0, z;=0, iel:n], (Variable elimination)
t; >0, =z €{0,1}, i€0:n] jell:n].

b) Because all parameters are integers, we may assume all lectures start at integer times. Write a second
formulation using binary indicator variables z;; € {0,1} fori =1,...,nand ¢t =0,...,T, where x;; = 1
means lecture 7 starts at time ¢.

Answer: Let b; be equal to min(b;, T — ;). The formulation in this case is given as

ming

s.t.

O —

E?Za zip = 1, i€
xi =0, iel:
o= Siciar <n-(1—zy), i€]
xi € {0,1}, ' ie]

) (Start time bounds)

]

l, t€[0:T\[a;: b;], (Out of bound starts)
l, tel0:T], (Conflict elimination)
], te0:T].

Given a lecture i € [1 : n], the conflict elimination constraint prevents any other lecture j # i from start
in the time window from ¢ to ¢ + [; — 1 if the lecture ¢ have started at time t, i.e., x;; = 1.



