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1. Let G = (N, A) be a directed graph, s,t € N and let w, € Q be arc weights. Recall that a directed path is a
sequence of arcs P = (ay,...,ax) in which a;’s head is a;41’s tail, and in which no node repeats. Show that
the decision version of directed TSP polynomially reduces to asking if some directed s-t path in G has total
weight less than some number.

Answer: From G = (N, A), we create another directed graph G = (N, E) as follows:
e Duplicate each n € N and denote by n/,n” € N.

e For every arc that arrives to n in G it does arrive to n’ in é, and every arc that departs from n in G it
does depart from n” in G. Those arcs have the same weight w, € Q.

e Create an arc from n’ to n” with weight —M, where M =23, |wa| + 1.

Fixed n/,n” € ]v, we prove that the TSP instance has a solution with total weight less than or equal to d if
and only if there exists a directed n’ — n” path in G with total weight less than or equal to d — M(|N| — 1),
where [d| < 7 4 lwal.

Indeed, given a TSP solution with total weight less than or equal to d, the corresponding sequence of arcs
in G can be completed to a directed n’ —n"" Hamiltonian path by including the transition arcs from a node m’
to m”, for every m’,m” € N\{n’,n"”}. The total weight of such directed path is less than or equal to
d— M(|N| — 1) since there will be |[N| — 1 arcs of weight —M in any directed n’ — n” Hamiltonian path.
Conversely, consider a directed n’ — n”” path with total weight less than or equal to d — M(|N| —1). We
have to prove that such directed path is Hamiltonian, that is, it traverses every pair of nodes (m', m’), where
m/,m"” € N\{n/,n"}. If it does not traverse some pair (m’,m”) then — Y aea|lWal = M(IN| —1) is a lower
bound on the total weight of the directed path. However, this lower bound implies the following inequality

d—M(N|=1)> = |wa| = M(IN| =2) <= d+ Y |wa>M
acA a€A
= 2 |wa| = M,
acA

which is a contradiction. Therefore, a directed n’ — n’ path with total weight d — M (|N| — 1) must traverse
all the nodes in G. Thus, the induced sequence of arcs in G defines a Hamiltonian cycle with total cost less
than or equal to d.

2. Recall the uncapacitated facility location problem. We have a set of candidate locations M = {1,...,m},
and a set of customers N = {1,...,n}. Opening a facility at location ¢ € M incurs a fixed cost of f; > 0,
and satisfying j’s demand from 4 incurs a cost of ¢;; > 0. Customers can only be served from 7 if the facility



is open, but there is no other constraint (such as capacity) on what the facility can serve. Show that the
decision version is NP-complete using 3-SAT.

Answer: The construction of the Uncapacitated Facility Location (UFL) instance from 3-SAT is similar to
the Vertex Cover construction. Indeed, we define the same graph from the 3-SAT instance and interpret the
nodes as facilities and the edges as customers.

Indeed, consider an instance (U,C) of the 3-SAT such that U := {z1,...,z,} is the set of variables and
C:={C4,...,C} is the set of clauses. Then, construct a graph G = (N, E) in the following way:

e For each variable € U, create a pair of nodes [z] and [Z]. We refer to [x] and [Z] as variable nodes.
Connect [z] and [Z] by an edge called variable edge.

o For cach clause C; € C, create three nodes denoted by [C;,1; 1], [Ci, i 2], and [C;,1; 3], where l; 1, 1; 2,
and [; 3 are the three literals of C;. We refer to those nodes as clause nodes. Connect all the three clause
nodes by an edge and form a clique of size 3. Those edges are called clause edges.

o Connect a variable node [u] to a clause node [C;, ;] if the literals [;; and w are the same. Call this edge
a forcing edge.

A few remarks are instructive for this graph.
(i) The number of nodes is |[N| = 2v + 3k and the number of edges is |E| = 2v + 6k.

(ii) A lower bound on the size of a vertex cover for G is v+ 2k. This is because the pair of variable nodes [x]
and [Z] form a clique of size 2 and the variable clauses [C;,1; 1], [Cy,li 2], and [Cy,1; 3] form a clique of
size 3. Recall that to cover the edges of a clique of size r one needs at least 7 — 1 nodes from the clique.

We now define a UFL instance whose solution is essentially the minimum cardinality vertex cover. Indeed,
let f; =1 for every node ¢ € N and let

o — 0, ifie€e,
M, ifide,

for all i € N and e € E, where M := |N| + 1. Then, our UFL instance is defined as

min ZieN ZEEE CieZie T ZiEN Ti

st D ien zie = 1, Ve e F,
ZeeEZieg‘E|'£Ei7 VZ'EN,
x; € {0,1}, 2 >0, Vi€ N, Ve c E.

Note that any vertex cover D C N induces a UFL solution with objective cost equal to |D|, and any feasible
solution (z, z) to the UFL instance such that the set {i € N | 2; = 1} is not a vertex cover has objective cost
greater than |N|. In particular, v + 2k is a lower bound for the optimal value of the UFL instance

We now complete the proof by showing that the 3-SAT instance is satisfiable if and only if there exists a
feasible solution to the UFL instance with objective cost less than or equal to v + 2k, or in other words, a
vertex cover of cardinality v + 2k.

Indeed, suppose the 3-SAT is satisfiable and let A be an assignment that makes all the clauses true. Consider
the subset of nodes D C N defined as follows:

e The subset D contains all the variable nodes [u] such that the literal u is true by the assignment A.

3

e For each clause C;, the subset D contains the other two clause nodes {[C;, ZZ‘,j]}j:l ot

is true by the assignment A.

if some literal I; .

Note that D has cardinality v 4+ 2k. We prove that D is a vertex cover. Indeed, each variable edge induced
by the nodes [z] and [Z] is covered by exactly one node in D. The clause edges in the clique defined by the
node clauses [C;,l; 1], [Ci,l; 2], and [C},1; 3] are covered by exactly 2 node in D. The forcing edge between a
variable node [u] and a clause node [C;, u] is covered by [u] € D if the literal u is assigned true in A or it is
covered by [C;, u] otherwise. Therefore, D is a vertex cover of cardinality |D| = v + 2k.



Conversely, suppose that G has a vertex cover D C N of cardinality |D| = v+ 2k. Then, exactly one variable
node among [z] and [Z] belongs to D, for each variable x € U, and exactly two node clauses among [C;,1; 1],
[Cs,1i 2], and [C},1; 3] belongs to D, for each clause C; € C. Thus, the literals of the selected variable nodes
can be made true and they induce a Boolean assignment A of the variables in Y. For each clause Cj, the one
node clause [C;,u] that does not belong to D is connected to the node variable [u] that must belong to D,
otherwise the corresponding forcing edge is not covered by D. This proves that the assignment satisfies all
the clauses and the 3-SAT is satisfiable.

3. Consider a knapsack feasible set S = z € {0,1}" : Y ien @i < b, where we assume a; < b for any i € N,
i.e. every item can individually fit in the knapsack, and thus S is full-dimensional. Consider a set C' C N
satisfying > ;.- a; > 0.

(a) Prove that ), . z; <|C|—11is valid for S.
Answer: Because the knapsack coefficients a;’s are non-negative we have the inequality » ;.- a;x; < b.

If a solution z satisfies ) ;. x; > |C| then x; equals 1 for every node i € C but this violates the condition
> icc @it < b. Thus, the inequality », .~ z; < |C| -1 1is valid for S.

(b) Give necessary and sufficient conditions for the inequality to be facet-defining for conv(S).

Answer: We prove that the necessary and sufficient condition are
(i) The cover C'is a minimal cover, that is, ;. ;3 @ < b, for all j € C.
(ii) There exists k € C such that } ;o 4y @i + an < b, for all n € N\C.

Indeed, suppose that conditions (i) and (ii) hold. Denote by 1¢ € {0,1}" the vector with 1’s at the
coordinates i € C, and 0’s otherwise. Then, {1¢ —¢;:i € C}U{1lc —er +e, : n € N\C} are |N| affinely
independent vectors that belong to the face F' induced by the valid inequality ), z; < |C|—1, that is,

in:|c—1}.

F :=conv(S)N {x e RN
ieC

So, F' has dimension greater than or equal to |[V| — 1. The constraint ), - x; = [C| —1 is not an implicit
equality of conv(S) since conv(9S) is full dimensional. This implies that the dimension of F' is less than
or equal to |N| — 1. Thus, F' has dimension |N| — 1 and it is a facet of conv(S).

Conversely, suppose that F' is a facet of conv(S). Assume by contradiction that C' is not a minimal
cover, i.e., there exists a proper subset C/ C C that is also a cover. This implies that the valid inequality
> icc®i < |C| =1 can be obtained by the summation of the valid inequalities ), ., 2; < |C'| = 1 and
x, > 0 forall 7 € C\C". So, the valid inequality ) ;. 2; < |C|—1 is redundant, so it is not facet-defining
for conv(S), which is a contradiction. Thus, C must be a minimal face and condition (i) is necessary.

Let k € C be such that } ;.\ ) @i is minimum. Assume by contradiction that there exists n € N\C
such that Ziec\{k} a; + a, > b. Then, F is contained into the affine space

Zx¢:|C|—1, xnzo}.

H:= {a? e RV
eC

Because H has dimension |N| — 2 we conclude that F' is not a facet, which is a contradiction. Thus,
condition (ii) is also necessary.

4. Let (N,E) be an undirected, connected network, and let S C {0,1}¥ be the set of indicator vectors of
spanning trees. For each question below, justify your answer with a proof.



(a) Can S ever be full-dimensional?

Answer: No, because S is contained into the proper affine subspace H := {z € R¥ | ¥ _px. = |[N|—1}.

(b) Suppose the network is itself a tree. What is dim(.S)?

Answer: The dimension of S is dim(S) = 0 since the only feasible solution is the tree itself. In other
words, the cardinality of S is 1.

(c) Suppose the network is a cycle. What is dim(.S)?

Answer: The dimension of S is dim(S) = |E| — 1. Indeed, dim(S) is less than or equal to |E| — 1, and
{1g —¢; |l € E} are |E| affinely independent indicator vectors in S.

(d) What is dim(S) in the general case? Use your previous answers.

Answer: It was announced in Canvas by professor Toriello.

. Let (N, A) be a complete directed network, and let S C {0,1}4 be the set of indicator vectors of directed
Hamiltonian cycles. What is dim(S)? Justify your answer.

Answer: The dimension of S is
dim(S) = (IN| = D)(IN| - 2) - 1.

In order to prove this formula, we reduce the problem of a Hamiltonian cycle in a complete directed graph
with n nodes to the Hamiltonian path in a complete directed graph with n — 1 nodes.

Indeed, given any enumeration of the nodes N = {v1,...,v,}, a Hamiltonian cycle C in a complete directed
graph K, is the indicator vector of the arcs in the following sequence nodes:

C = 01V5(2)V6(3) * * * Vo (n) V15

where o : {2,3,...,n} — {2,3,...,n} is a permutation, i.e., bijection. Note that P = v (2)Vs(3) - Vo(n)
defines a Hamiltonian path in the completed directed graph K,,_;, where the nodes are given by N\{v}.
Thus, there is a one to one correspondence between the set S of indicator vectors of directed Hamiltonian
cycles in K,, and the set S’ of indicator vectors of directed Hamiltonian paths in K,,_1. In particular, the

number of maximal affinely independent vectors are the same. Hence, both set dimensions are the same, i.e.,
dim(S) = dim(5").

So, it is enough to prove that the dimension of the set S of indicator vectors of directed Hamiltonian paths
on a complete directed network (N, A) is [N|(JN| — 1) — 1. Indeed, the cardinality of A is [N|(|N] — 1) and
for every indicator vector x of a Hamiltonian path we have that Zae iZa = |N|—1. So, the following upper
bound holds: B L
dim(8) < [NI(IN] - 1) - 1.

Now we show that any implicit equality ) 7.2, = 3 for S is a multiple of YowciTa = |ZV| — 1. Indeed,
Given two arcs a’,a” € A let H be a directed Hamiltonian cycle containing o’ and a”. Then, H\{a'}
and H\{a"} are Hamiltonian paths that we represent by the indicator vectors z’ and x”, respectively. Then,

Zaeﬁ Oéax/a = B o , o
Zaegaazgzﬁ — 0= Zaa(l‘a—xa) _aa'(0_1)+aa//<1_0)

aeg
> Qg = Q7.



Hence, there exists ¢ € R such that a, = ¢ for all a € A In particular, we have that

B=> auza=c-Y z, = B=(N-1)/c

an aeg

if ¢ is non-zero. This concludes that any implicit equality > ciQaZq = f for Sisa multiple of Zae ITa =
|N| — 1. Therefore, dim(S5) = [N|(|N| —1) — 1.

. Let (N, E)) be an undirected network. Recall that a node (or vertex) cover V'C N is a node set that is incident
to every edge in E, and let S C {0,1}" be the set of indicator vectors of covers.

(a) Show that S is full-dimensional.

Answer: The vertex covers defined by {1x}U{1x —e; : i € N} are |[N|+1 affinely independent vectors.
Thus, S is full-dimensional.

(b) Let K € N be a clique in the network. Show that »,, x; > |K| — 1 is valid for S. Give necessary and
sufficient conditions for the inequality to be facet-defining, and justify these conditions constructively (i.e.
by exhibiting n affinely independent points).

Answer: Suppose there is a vertex cover € S such that ) ;. ; < [K|— 2. Then, there are at least 2
nodes j, k € K that are not in the cover V induced by z. So, the edge (j, k) € E(K) is not covered by V|
which is a contradiction. Thus, the inequality ), , z; > |K| — 1 is valid.
The necessary and sufficient condition for the inequality ), x; > |K| — 1 to be facet-defining are:

(i) K is a maximal clique, that is, K U {v} is not a clique, for all v € N\ K.

(ii) For all v € N\K, there exists k = k(v) € K such that V := N\{k, v} is a vertex cover.

First, we prove that conditions (i) and (ii) are sufficient. The face F defined as

Zwi:|K|—1}.

F = conv(S)N {1‘ eRN
ieK

has |N| affinely independent vectors given by {1y —e; : j € K} U{ly —e, — ey : v € N\K}. Thus, F
is a facet.

Conversely, suppose that F is a facet. To show condition (i), assume by contradiction that K is not a
maximal clique, i.e., there exists v € N\ K such that K U{v} is a clique. Then, the inequality ), z; >
|K| — 1 is the sum between the valid inequalities }_,c ¢,y #; = |K| and —z, > —1. So, the valid
inequality » .., #; > |K| — 1 is redundant and cannot be facet-defining, which is a contradiction.

To show condition (ii), assume by contradiction that there exists v € N\K such that the subset V :=

N\{k, v} is not a vertex cover for all k € K. This implies that the face F is contained in the proper affine
subspace H = {z € RN | ¥, ;e @, = |K| — 1, , = 1}. So, F is not a facet and this is a contradiction.

(c) Let C C N be the node set of an odd cycle in the network. Show that ), .~ 2; > [|C|/2] is valid for S.
Suppose C has a chord, i.e. an additional edge connecting two nodes besides the edges in the cycle. Show
that the inequality is not facet-defining. Suppose C is chordless; is the inequality always facet-defining?

Answer: Since z € S represents a vertex cover, we have that z; +z; > 1 for all {4, j} € E. Then,
IC| < Z (i +x5) = 22;1:1' = 1] <Zx¢.
T jeC ’ ieC 2 - iceC
, i 7
{i)er fevele)

Thus, the inequality ;. z; > [|C|/2] is valid for S.

We show that such valid inequality is not facet-defining if C' has a chord. Denote by F the face induced
by the valid inequality } ..~ x; > [|C|/2]. Then, we prove that



(i) There is an odd subcycle C’ and an even subcycle C” formed by the chord in C such that
ICl = |C"| +1C"| —2. (1)
Note that equation (1) implies that [|C]/2] = [|C']|/2] + |C"|/2 — 1.

(ii) The face F is contained into the affine subspace

Ziec i =11C1/2], }.

H:= {x e RN
Diccr @i = [|C"]/2]

Thus, F' is not a facet.

We first prove (i). Indeed, a chord on a cycle C creates two subcycles C” and C”, where the union C'UC”
is the cycle C' and the intersection C' N C” is a set with the two nodes from the chord. If the number of
nodes on both subcycles were even or odd then C' would be an even cycle. Thus, there must exist an odd
subcycle C’ and an even subcycle C”.

Now we prove (ii). For that we need to prove the inequality »;ccin (., Zi = [C”[/2 — 1 is valid for S,
where u and v are the two nodes from the chord in C| i.e., C' N C" = {u,v}. Indeed,

|C”‘—3§ Z T; + x5

(1.7)€E(C”)
i#u,v and jFu,v

i€C\{u,v}

This implies that 3¢ o .0y @i > [(1C7] = 3)/2] = |C”|/2 = 1. Since C" is an odd cycle we know the
inequality >, .~ z; > [|C'|/2] is valid for S. Then, for every solution x € S that belongs to the face F'
we have that

PQOF‘:Z%:Z%+ Z x;

ieC iec’ i€C\{u,v}
Cl/
> a0
i€C’

This implies that ), ., z; < [|C[/2] — |C"[/2+1 = [|C'|/2]. Hence, )", . z; = [|C'|/2]. Therefore, F
is contained into the affine space H.

We now show that even if C' is chordless the inequality ) ;.- 2; > [|C|/2] may not be facet-defining.
Let G = (N, E) be the graph defined as N = {1,2,3,4} and E = {(1,2),(1,3),(2,3),(1,4),(2,4), (3,4)},

see Figure 1. Let C be the chordless odd cycle {1,2,3}. Then, for every solution z € S in the face F it

must also belong to the affine space H := {x € RV : Zf’zl x; =2, x4 = 1}. Thus, F is not a facet.



Figure 1: Chordless odd cycle counter-example.



