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1. Let N ={1,...,n}, and let f: 2" — R be a set function with (@) = 0; define
P(f) = {xeRN:ingf(S), SgN}.
€S

We showed in class that if f is submodular, the greedy solution is optimal for max,cp(f) > ;c y wir; with any
objective vector w € Ry. Prove the converse: if the greedy solution is optimal for any objective vector, then
f is submodular. Hint: It suffices to consider objectives of the form w € {0, 1}".

Answer: It is enough to show that for every k the following inequality holds:

f(Skt1) = F(Sk) > f(Skr2) — f(Sk U{k +2}),

where S; := {1,2,...,}, since we can always relabel the set N and describe the submodularity property in
this form.
(Primal greedy solution): Indeed, let wy; = -+- = w, = 1. Then, the greedy optimal solution is

mT = f(Sl)a

953 :]0(52)*5171k :f(Sz)*f(Sﬁ,
vt = (S;) ~ SIT et = £(S) — £(S5-0),

25 = F(S0) = S0 it = F(Su) = F(Suo):

It follows from the feasibility of the primal greedy solution that

k
FSvULk+20) > Y @i = @l afys = (k) + f(Skra) = f(Skt1)-
j=1

jGSk,u{k+2}
Hence, the function f is submodular.

(Dual greedy solution): Indeed, let wq = -+ = w = 1, wr1 = 0, wgy2 = 1, and wi4g = -+ = w, = 0.
According to the dual greedy solution, the dual optimal is

Ys =

N w; — Wi, if S =.95; andié€ N,
0, otherwise,



for all S € 2. This implies that the dual optimal value is Y., f(S;)(w; —w;1) for the optimization problem

min, ng\/ f(S) - ys
s.t. ZSQ\MGS ys > w;, Vi€ N.
Below are some remarks about the optimal solution:
e The optimal value can be described as

n

D F(Si)(wi = wira) = f(Sk) = f(Sks1) + f(Skta)- (1)

i=1

e The solution defined as
)1, if S =Sy u{k+2},
ys = 0, otherwise,

for all S € 2V is feasible and has objective value f(Sj U {k + 2}). In particular, we have that

F(Sk) = f(Skt1) + f(Skp2) < f(Sk ULk +2}).

Hence, f is submodular.

. Recall the integral polyhedron P = {z € [0,1]" : > @; < U}, for some U € N. Is P a submodular
polyhedron? In other words, does there exist a submodular function f with P = P(f) or P = P, (f)? Justify
your answer.

Answer: Consider the function f(S) := min(|S|,U). We show that P = P, (f).
Let z € Py (f). Then,
e Let S = N and note that 3", z; =Y,y 2z < f(N) <U.
o Let S ={j}. Then, z; =3 ;c sy @i < f({j}) <1, for every j € N.
This implies that x € P. Conversely, let x € P and let S C N. There there are two options:
o If S| <U then ), g <> ,cg1=1[S]= f(9).
o If |S| > U then we have that Y, qx; < D7 < U] = f(S).
This implies that z € Py(f).

We just have to prove that f is a submodular function. Indeed, for any subset S C N and index i € N\S we
have that
1, if |S] < U,

0, otherwise.

fFSULi}) = f(S5) = {
In particular, the following inequality holds

fF(SU{i}) = f(5) = F(SU{i,j}) — F(SU{G}),

for every subset S C N and indexes i,j € N\S. Hence, f is submodular.

. Let (IV, E) be a connected, undirected network. Consider the integer programming formulation

zi; =yl +yhi, {i,j} € E, k#1,j, }

! oY= Tijliijyer + Ppesqin Yir = 1 1 €N, j €N\

Here, 1 is the indicator function, equal to one when a statement is true and zero otherwise. Note that the y
variables are ordered triples and the last set of constraints ranges over ordered pairs.



a) Prove that proj,(Qr) is the set of indicator vectors of spanning trees of (N, F). Hint: Interpret yfj as
indicating that k is on j’s side of the spanning tree.

Answer: Recall that the spanning tree formulation is given by:

Plz{xEZf: Z ze <|S|—1, 0 # S C N; Z:ce:n—l}.

e€E[S] ecE
We start by proving that P; C proj,(Qr). Let € Pr and define y € Zj_(n_2)|E| such that

1, if z;; =1 and k lies in the same connected component as j
yfj = when we remove the edge {4, 7} from the spanning tree,
0, otherwise.

The constraint z;; = yfj + yfl is satisfied for any {i,j} € E and k # 1, j because if z;; is equal to 1
then k lies either in the same connected component as j or ¢ but not both at the same time, otherwise
the subgraph represented by = would have a cycle. If x;; is 0 then yfj and yﬁ are 0 by definition.

The second group of constraints z;; + ()N yfk = 1 is also satisfied for all i € N, and j € N\i.
Indeed, if z;; is equal to 1 then ygk must equal 0 for all k£ € §(3)\{j}, otherwise if some ygk equal 1 then
x;r is also 1 and j lies in the same connected component as k. This implies that there are two different
paths from ¢ to j, i.e., the subgraph represented by = has a cycle. If x;; is 0 then the unique path that
connects i and j have length greater than 1, which means that there exists r € §(i)\{;j} such that z;, is
1 and there is a unique path from r to j. In particular, the variable y, is equal to 1 and all the variables
yl for k € §(i)\{j,r} are 0. Indeed, if 7/, is 1 for some k € §(i)\{j, 7} then the variable z;; equals 1
and j lies in the same connected component as k, which implies that there are two different paths from ¢
to j. Hence (z,y) belongs to Q.

Lets prove that proj,(Qr) € Pr. Indeed, consider (z,y) € Q. Given {i,j} € E, if we sum up the first
group of constraints x; = yJ; + y5; over all k # i, j we get

N
keN\{i,j}

and if we sum it over all {i,j} € E we obtain

(n=2)- Y wy= Y > Whited=d > > b (2)

{i,j}€E {i,j}eE keN\{i,5} i€N je§(i) keN\{t,5}

Now, we sum up the second group of constraints z;;1y; j3ep + Zkeé(i)\j yzjk = 1 over all ¢ € N, and
j e N\

nn—=1)=%" > wylujnes+>, >, . Yk

ie€N jeN\{s} i€N jEN\{i} ked(i)\j

D ORED D S o

{i.j}eE (€N keN\{i} jes(i)\k

=2. Z ZijJrZZ Z yfj, (3)

{i.j}eE i€N jeo(i) ke N\{i,j}

where the second equality follows from the fact that z;; equals zj;; if {i,j} € E, and we replace k
by j in the triple sum expression. By subtracting Equation (3) from Equation (2), we conclude that
n- Y ¢ iver ij = n(n— 1), which implies the constraint 3, »cp@ij =n— 1.



We now prove the constraint ) . Bs] Le < |S| — 1 is satisfied for every nonempty set S C N. The idea
is the same, except that we sum over all elements of S instead of all elements of N. Given {i,j} € E[S],
if we sum over k € S\{4,j} in the first constraint group we get

(S| =2z = > wli +5i

keS\{i.j}

and if we sum it over all {i,j} € E[S] we obtain

Is1-2)- > = > > wh+d = Y S Wk

{i,j}€E[S] {i,j}€E[S] keS\{:,5} i€S je5(1)NS keS\{i,j}

For the second constraint group, zi;1{; jyer + X resi yl, =1, we sum over all s € S and j € S\{i}:

SI0SI -1 =Y > wilppes+d., >, Y. vk

i€S jes\{i} i€S jES\{i} ked()\
=20 ) wyt), ) D
{i.j}eElS] 1€5 keS\{i} jed(i)\k
=20 ) wyt) D, ) v
{i.j}eEls] €5 jes(i) keS\{i,j}
22 3, @it Y. D iy
{i,j}€E[S] i€8 jes(i)NS keS\{i 5}

where the last inequality comes from the fact that the summation over j € §(i) is greater than or equal
to the summation over j € §(i) N .S. Therefore, we have that |S|- > ¢, i eprg @i < [S|(|S] — 1), which
implies the constraint ;e pg 2y < [S] = 1.

b) Let Q be the linear relaxation of Q; where we remove integrality constraints. Prove that proj,(Q) is the
convex hull of indicator vectors of spanning trees.

Answer: In the proof above for the inclusion proj,(Q;) € P; we did not use any specific property of
the integers. Indeed, the same argument proves that proj,(Q) C P if we replace the set of integers by
real numbers. In summary, we have the following properties:

i, proj, (@) C P.
ii. P = conv(FPy).
ili. proj,(Qr) =P

Since the convex hull and the projection operators commute, we have the following identities:

P = conv(Pr) = conv(proj,(Qr)) = proj, (conv(Qr)) C proj,.(Q).

Hence, P = proj,.(Q).

4. Let N = {1,...,n}. A collection of subsets £ C 2V is laminar if S;,S, € L implies either S; N Sy = 0,
S1 C Sy or S1 2 S5. So at least one of S NSz, S1\S2 and S3\S; is empty. It may be helpful to think of a
laminar family as a rooted tree, where N is the root, the individual elements are leaves, and other sets are
intermediate nodes with adjacency determined by containment.

a) For N and laminar family £, let A € {0, 1}**Y be the incidence matrix of £: as; = 1 when i € S and
as,; = 0 otherwise. Prove that A is TU.

Answer: Removing a row of A is equivalent to remove a subset of the laminar family and removing
a column of A is equivalent to remove an element i € N from all subsets S € £. Thus, any square
submatrix B € {0, 1}*** of A is the incidence matrix of a laminar family £’ C 2V,



Since elementary row operations do not change the determinant of a matrix we can subtract the rows
associated to subsets S; and Sy such that S; C S and redefine the subset Sa, i.e., Sg := S9\S;. The
resulting matrixNE is the incidence matrix of a laminar family where all the subsets are disjoints. Thus,
each column of B has at most one +1, which implies that

det B = det B € {0, £1}.

b) Let £1 and L3 be two laminar families, and let £ = £1 U L5. Prove that the incidence matrix A of L is
TU.

Answer: Let B be a square submatrix of A. Let S;,S52 € £; be two rows of B such that S; C Ss.
Subtract S; from Sy and redefine the subset S, i.e., Sy := S3\S1. Analogously for the subsets of the
other laminar family Lo, that is, S}, S} € Ly such that S} C S}. Thus, each column of B has at most
two 1’s. Given a column with two 1’s, the associated rows are subsets S and S’ that belong to different
laminar families, that is, S € £; and S’ € L.

We expand the determinant for the columns with exactly one 1, which results in a submatrix B. There
are two possibilities for B:

(i) There exists a column of 0’s in B. This implies that det B = 0.

(ii) All the columns of B have exactly two 1’s. Thus, the matrix B is the node-edge incidence matrix
of a bipartite graph, where the nodes are the rows of B and £ U L5 is the node partition. Hence, B
is TU.

Therefore, _
det B = det B = det B’ € {0,£1}.

Now consider a submodular function f :2¥ — R with f(0)) = 0, and recall the submodular polyhedron P(f).

c) Let A, B C N be two sets with A\B, B\A, AN B # (. Show that if the constraints for A and B are
binding, then so are the constraints for AN B and AU B. Show that these four binding constraints define
a constraint matrix of rank three.

Answer: Indeed, we have the following relations
f(A)+ f(B) = f(ANB) + f(AU B)

i€ANB jEAUB
=> @i+ Y x;=f(A) + f(B),
icA jEB

where the first inequality follows from the submodularity of f, the second inequality is a consequence of
the feasibility of x, the third relation is an equality obtained by rearranging the summation, and the last
equality follows from the hypothesis. Therefore, we get that f(A) + f(B) = f(ANB) + f(AU B).

This implies that the constraints associated to AN B and AU B are also binding, otherwise if f(ANB) >
Y icanp Tior f(AUB) > 3., 5z we would get that f(ANB)+ f(AUB) > f(A) + f(B), which is
a contradiction.

Consider the matrix induced by the constraints associated to A, B, AN B, and AU B:

, ifi=1landj€ ANB,
ifi=2and j € A,
ifi=3and j € B,
, ifi=4and je€ AUB,

, O.W..

1
1
My ={1
1
0



Since elementary row operations do not change the rank of a matrix, we can subtract the first row of M
from the second and third rows. Thus, we get the matrix

. ifi=1landje ANB,

1

1, ifi=2andje A\B,
M/ =41, ifi=3andje B\A,

1

0

ij
ifi=4and j € AUB,

0. W..

)

)

If we subtract the first, second, and third rows of M’ from its forth row, we get a zero row vector:

1, ifi=1landje ANB,

1, ifi=2and j € A\B,
M;; =141, ifi=3and j€ B\A,

0, ifi=4,

0, ow..

Hence, rank(M) = rank(ﬂ) < 3. The rank of M is indeed 3 because if we take one element of AN B,
A\B, and B\ A the submatrix obtained is equivalent to the identity matrix:

100
Ib=10 1 0
00 1

For any face F' C P(f), show that you can choose the linearly independent binding constraints defining
F' so they form a laminar family.

Answer: Let F be a face of P(f). There exist Sy,...,S, C N such that the face F is represented as

F:{xeP(f): > @i = f(Sk), kzl,.‘.,r}.

1E€Sk

From item (c), all possible pairwise intersections and unions generated from Si,...,S, are implicit
equalities for F. We can apply elementary rows operations (Gaussian elimination) to create a set partition
of S; U---US) whose corresponding equality constraints represent F. In other words, F' = {x € P(f) :
Y icp®i= f(B), B €L} where L is

L={Be2V: B:<ﬂ5k>ﬂ< N s,E), AC{L,...,r}, |4 >1

ke A ke AC
Moreover, L is a laminar family because £ is a set partition of S; U--- U Sk.
Conclude that for two integer-valued submodular functions f,g : 2 — Z, the polyhedron P(f) N P(g)
is integral.

Answer: We prove that any face F' of P(f)NP(g) is integral. From item (d), if F'is a face of P(f)NP(g)
then there are laminar families £q, Lo such that

F= {x € P(f)N P(g) : %2; . Zﬁg;)) g; :g } '



If f(B) differs from g(B) for some B € £1 N Ly then F' is empty. Otherwise, the function given by

h(B):{f(B), if B e Ly,
g(B), if BeLy

is well-defined. Note that we can describe the face F' as
F= {x e P(f)nP(g): sz =h(B), Be L, Uﬁg}.
i€eB

Since the constraint matrix of >, 5 2; = h(B) for all B € L1 U L is the indicator matrix of the union
of two laminar families, we have from item (b) that it is totally unimodular (TU). Hence, F is integral.



