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1. Let N = {1, . . . , n}, and let f : 2N → R be a set function with f(∅) = 0; define

P (f) =

{
x ∈ RN :

∑
i∈S

xi ≤ f(S), S ⊆ N

}
.

We showed in class that if f is submodular, the greedy solution is optimal for maxx∈P (f)

∑
i∈N wixi with any

objective vector w ∈ R+. Prove the converse: if the greedy solution is optimal for any objective vector, then
f is submodular. Hint: It suffices to consider objectives of the form w ∈ {0, 1}N .

Answer: It is enough to show that for every k the following inequality holds:

f(Sk+1)− f(Sk) ≥ f(Sk+2)− f(Sk ∪ {k + 2}),

where Sj := {1, 2, . . . , j}, since we can always relabel the set N and describe the submodularity property in
this form.

(Primal greedy solution): Indeed, let w1 = · · · = wn = 1. Then, the greedy optimal solution is

x∗1 = f(S1),
x∗2 = f(S2)− x∗1 = f(S2)− f(S1),

...

x∗j = f(Sj)−
∑j−1
k=1 x

∗
k = f(Sj)− f(Sj−1),

...

x∗n = f(Sn)−
∑n−1
k=1 x

∗
k = f(Sn)− f(Sn−1).

It follows from the feasibility of the primal greedy solution that

f(Sk ∪ {k + 2}) ≥
∑

j∈Sk∪{k+2}

x∗j =

k∑
j=1

x∗j + x∗k+2 = f(Sk) + f(Sk+2)− f(Sk+1).

Hence, the function f is submodular.

(Dual greedy solution): Indeed, let w1 = · · · = wk = 1, wk+1 = 0, wk+2 = 1, and wk+3 = · · · = wn = 0.
According to the dual greedy solution, the dual optimal is

y∗S =

{
wi − wi+1, if S = Si, and i ∈ N ,

0, otherwise,
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for all S ∈ 2N . This implies that the dual optimal value is
∑n
i=1 f(Si)(wi−wi+1) for the optimization problem

miny
∑
S⊆N f(S) · yS

s.t.
∑
S⊆N :i∈S yS ≥ wi, ∀i ∈ N.

Below are some remarks about the optimal solution:

• The optimal value can be described as

n∑
i=1

f(Si)(wi − wi+1) = f(Sk)− f(Sk+1) + f(Sk+2). (1)

• The solution defined as

yS =

{
1, if S = Sk ∪ {k + 2},
0, otherwise,

for all S ∈ 2N , is feasible and has objective value f(Sk ∪ {k + 2}). In particular, we have that

f(Sk)− f(Sk+1) + f(Sk+2) ≤ f(Sk ∪ {k + 2}).

Hence, f is submodular.

2. Recall the integral polyhedron P = {x ∈ [0, 1]n :
∑n
i=1 xi ≤ U}, for some U ∈ N. Is P a submodular

polyhedron? In other words, does there exist a submodular function f with P = P (f) or P = P+(f)? Justify
your answer.

Answer: Consider the function f(S) := min(|S|,U). We show that P = P+(f).

Let x ∈ P+(f). Then,

• Let S = N and note that
∑n
i=1 xi =

∑
i∈N xi ≤ f(N) ≤ U .

• Let S = {j}. Then, xj =
∑
i∈{j} xi ≤ f({j}) ≤ 1, for every j ∈ N .

This implies that x ∈ P . Conversely, let x ∈ P and let S ⊆ N . There there are two options:

• If |S| ≤ U then
∑
i∈S xi ≤

∑
i∈S 1 = |S| = f(S).

• If |S| > U then we have that
∑
i∈S xi ≤

∑n
i=1 xi ≤ |U| = f(S).

This implies that x ∈ P+(f).

We just have to prove that f is a submodular function. Indeed, for any subset S ⊆ N and index i ∈ N\S we
have that

f(S ∪ {i})− f(S) =

{
1, if |S| < U ,

0, otherwise.

In particular, the following inequality holds

f(S ∪ {i})− f(S) ≥ f(S ∪ {i, j})− f(S ∪ {j}),

for every subset S ⊆ N and indexes i, j ∈ N\S. Hence, f is submodular.

3. Let (N,E) be a connected, undirected network. Consider the integer programming formulation

QI =

{
x ∈ ZE+, y ∈ Z2(n−2)|E|

+

∣∣∣∣ xij = ykij + ykji, {i, j} ∈ E, k 6= i, j,

xij1{i,j}∈E +
∑
k∈δ(i)\j y

j
ik = 1, i ∈ N, j ∈ N\i

}
.

Here, 1 is the indicator function, equal to one when a statement is true and zero otherwise. Note that the y
variables are ordered triples and the last set of constraints ranges over ordered pairs.
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a) Prove that projx(QI) is the set of indicator vectors of spanning trees of (N,E). Hint: Interpret ykij as
indicating that k is on j’s side of the spanning tree.

Answer: Recall that the spanning tree formulation is given by:

PI =

{
x ∈ ZE+ :

∑
e∈E[S]

xe ≤ |S| − 1, ∅ 6= S ( N ;
∑
e∈E

xe = n− 1

}
.

We start by proving that PI ⊆ projx(QI). Let x ∈ PI and define y ∈ Z2(n−2)|E|
+ such that

ykij =

1, if xij = 1 and k lies in the same connected component as j
when we remove the edge {i, j} from the spanning tree,

0, otherwise.

The constraint xij = ykij + ykji is satisfied for any {i, j} ∈ E and k 6= i, j because if xij is equal to 1
then k lies either in the same connected component as j or i but not both at the same time, otherwise
the subgraph represented by x would have a cycle. If xij is 0 then ykij and ykji are 0 by definition.

The second group of constraints xij +
∑
k∈δ(i)\j y

j
ik = 1 is also satisfied for all i ∈ N , and j ∈ N\i.

Indeed, if xij is equal to 1 then yjik must equal 0 for all k ∈ δ(i)\{j}, otherwise if some yjik equal 1 then
xik is also 1 and j lies in the same connected component as k. This implies that there are two different
paths from i to j, i.e., the subgraph represented by x has a cycle. If xij is 0 then the unique path that
connects i and j have length greater than 1, which means that there exists r ∈ δ(i)\{j} such that xir is
1 and there is a unique path from r to j. In particular, the variable yjir is equal to 1 and all the variables

yjik for k ∈ δ(i)\{j, r} are 0. Indeed, if yjik is 1 for some k ∈ δ(i)\{j, r} then the variable xik equals 1
and j lies in the same connected component as k, which implies that there are two different paths from i
to j. Hence (x, y) belongs to QI .

Lets prove that projx(QI) ⊆ PI . Indeed, consider (x, y) ∈ QI . Given {i, j} ∈ E, if we sum up the first
group of constraints xij = ykij + ykji over all k 6= i, j we get

(n− 2) · xij =
∑

k∈N\{i,j}

ykij + ykji,

and if we sum it over all {i, j} ∈ E we obtain

(n− 2) ·
∑
{i,j}∈E

xij =
∑
{i,j}∈E

∑
k∈N\{i,j}

(ykij + ykji) =
∑
i∈N

∑
j∈δ(i)

∑
k∈N\{i,j}

ykij . (2)

Now, we sum up the second group of constraints xij1{i,j}∈E +
∑
k∈δ(i)\j y

j
ik = 1 over all i ∈ N , and

j ∈ N\i:

n(n− 1) =
∑
i∈N

∑
j∈N\{i}

xij1{i,j}∈E +
∑
i∈N

∑
j∈N\{i}

∑
k∈δ(i)\j

yjik

= 2 ·
∑
{i,j}∈E

xij +
∑
i∈N

∑
k∈N\{i}

∑
j∈δ(i)\k

ykij

= 2 ·
∑
{i,j}∈E

xij +
∑
i∈N

∑
j∈δ(i)

∑
k∈N\{i,j}

ykij , (3)

where the second equality follows from the fact that xij equals xji if {i, j} ∈ E, and we replace k
by j in the triple sum expression. By subtracting Equation (3) from Equation (2), we conclude that
n ·
∑
{i,j}∈E xij = n(n− 1), which implies the constraint

∑
{i,j}∈E xij = n− 1.
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We now prove the constraint
∑
e∈E[S] xe ≤ |S| − 1 is satisfied for every nonempty set S ( N . The idea

is the same, except that we sum over all elements of S instead of all elements of N . Given {i, j} ∈ E[S],
if we sum over k ∈ S\{i, j} in the first constraint group we get

(|S| − 2)xij =
∑

k∈S\{i,j}

ykij + ykji,

and if we sum it over all {i, j} ∈ E[S] we obtain

(|S| − 2) ·
∑

{i,j}∈E[S]

xij =
∑

{i,j}∈E[S]

∑
k∈S\{i,j}

(ykij + ykji) =
∑
i∈S

∑
j∈δ(i)∩S

∑
k∈S\{i,j}

ykij .

For the second constraint group, xij1{i,j}∈E +
∑
k∈δ(i)\j y

j
ik = 1, we sum over all i ∈ S and j ∈ S\{i}:

|S|(|S| − 1) =
∑
i∈S

∑
j∈S\{i}

xij1{i,j}∈E +
∑
i∈S

∑
j∈S\{i}

∑
k∈δ(i)\j

yjik

= 2 ·
∑

{i,j}∈E[S]

xij +
∑
i∈S

∑
k∈S\{i}

∑
j∈δ(i)\k

ykij

= 2 ·
∑

{i,j}∈E[S]

xij +
∑
i∈S

∑
j∈δ(i)

∑
k∈S\{i,j}

ykij

≥ 2 ·
∑

{i,j}∈E[S]

xij +
∑
i∈S

∑
j∈δ(i)∩S

∑
k∈S\{i,j}

ykij ,

where the last inequality comes from the fact that the summation over j ∈ δ(i) is greater than or equal
to the summation over j ∈ δ(i) ∩ S. Therefore, we have that |S| ·

∑
{i,j}∈E[S] xij ≤ |S|(|S| − 1), which

implies the constraint
∑
{i,j}∈E[S] xij ≤ |S| − 1.

b) Let Q be the linear relaxation of QI where we remove integrality constraints. Prove that projx(Q) is the
convex hull of indicator vectors of spanning trees.

Answer: In the proof above for the inclusion projx(QI) ⊆ PI we did not use any specific property of
the integers. Indeed, the same argument proves that projx(Q) ⊆ P if we replace the set of integers by
real numbers. In summary, we have the following properties:

i. projx(Q) ⊆ P .

ii. P = conv(PI).

iii. projx(QI) = PI .

Since the convex hull and the projection operators commute, we have the following identities:

P = conv(PI) = conv(projx(QI)) = projx(conv(QI)) ⊆ projx(Q).

Hence, P = projx(Q).

4. Let N = {1, . . . , n}. A collection of subsets L ⊆ 2N is laminar if S1, S2 ∈ L implies either S1 ∩ S2 = ∅,
S1 ⊆ S2 or S1 ⊇ S2. So at least one of S1 ∩ S2, S1\S2 and S2\S1 is empty. It may be helpful to think of a
laminar family as a rooted tree, where N is the root, the individual elements are leaves, and other sets are
intermediate nodes with adjacency determined by containment.

a) For N and laminar family L, let A ∈ {0, 1}L×N be the incidence matrix of L: aS,i = 1 when i ∈ S and
aS,i = 0 otherwise. Prove that A is TU.

Answer: Removing a row of A is equivalent to remove a subset of the laminar family and removing
a column of A is equivalent to remove an element i ∈ N from all subsets S ∈ L. Thus, any square
submatrix B ∈ {0, 1}k×k of A is the incidence matrix of a laminar family L′ ⊆ 2N

′
.
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Since elementary row operations do not change the determinant of a matrix we can subtract the rows
associated to subsets S1 and S2 such that S1 ⊆ S2 and redefine the subset S2, i.e., S2 := S2\S1. The

resulting matrix B̃ is the incidence matrix of a laminar family where all the subsets are disjoints. Thus,
each column of B̃ has at most one +1, which implies that

detB = det B̃ ∈ {0,±1}.

b) Let L1 and L2 be two laminar families, and let L = L1 ∪ L2. Prove that the incidence matrix A of L is
TU.

Answer: Let B be a square submatrix of A. Let S1, S2 ∈ L1 be two rows of B such that S1 ⊆ S2.
Subtract S1 from S2 and redefine the subset S2, i.e., S2 := S2\S1. Analogously for the subsets of the

other laminar family L2, that is, S′1, S
′
2 ∈ L2 such that S′1 ⊆ S′2. Thus, each column of B̃ has at most

two 1’s. Given a column with two 1’s, the associated rows are subsets S and S′ that belong to different
laminar families, that is, S ∈ L1 and S′ ∈ L2.

We expand the determinant for the columns with exactly one 1, which results in a submatrix B. There
are two possibilities for B:

(i) There exists a column of 0’s in B. This implies that detB = 0.

(ii) All the columns of B have exactly two 1’s. Thus, the matrix B is the node-edge incidence matrix
of a bipartite graph, where the nodes are the rows of B and L1∪L2 is the node partition. Hence, B
is TU.

Therefore,
detB = det B̃ = detB′ ∈ {0,±1}.

Now consider a submodular function f : 2N → R with f(∅) = 0, and recall the submodular polyhedron P (f).

c) Let A,B ⊆ N be two sets with A\B, B\A, A ∩ B 6= ∅. Show that if the constraints for A and B are
binding, then so are the constraints for A∩B and A∪B. Show that these four binding constraints define
a constraint matrix of rank three.

Answer: Indeed, we have the following relations

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B)

≥
∑

i∈A∩B
xi +

∑
j∈A∪B

xj

=
∑
i∈A

xi +
∑
j∈B

xj = f(A) + f(B),

where the first inequality follows from the submodularity of f , the second inequality is a consequence of
the feasibility of x, the third relation is an equality obtained by rearranging the summation, and the last
equality follows from the hypothesis. Therefore, we get that f(A) + f(B) = f(A ∩B) + f(A ∪B).

This implies that the constraints associated to A∩B and A∪B are also binding, otherwise if f(A∩B) >∑
i∈A∩B xi or f(A ∪B) >

∑
i∈A∪B xi we would get that f(A ∩B) + f(A ∪B) > f(A) + f(B), which is

a contradiction.

Consider the matrix induced by the constraints associated to A, B, A ∩B, and A ∪B:

Mij =



1, if i = 1 and j ∈ A ∩B,

1, if i = 2 and j ∈ A,

1, if i = 3 and j ∈ B,

1, if i = 4 and j ∈ A ∪B,

0, o.w..
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Since elementary row operations do not change the rank of a matrix, we can subtract the first row of M
from the second and third rows. Thus, we get the matrix

M ′ij =



1, if i = 1 and j ∈ A ∩B,

1, if i = 2 and j ∈ A\B,

1, if i = 3 and j ∈ B\A,

1, if i = 4 and j ∈ A ∪B,

0, o.w..

If we subtract the first, second, and third rows of M ′ from its forth row, we get a zero row vector:

M̃ij =



1, if i = 1 and j ∈ A ∩B,

1, if i = 2 and j ∈ A\B,

1, if i = 3 and j ∈ B\A,

0, if i = 4,

0, o.w..

Hence, rank(M) = rank(M̃) ≤ 3. The rank of M̃ is indeed 3 because if we take one element of A ∩ B,
A\B, and B\A the submatrix obtained is equivalent to the identity matrix:

I3 =

1 0 0
0 1 0
0 0 1

 .

d) For any face F ⊆ P (f), show that you can choose the linearly independent binding constraints defining
F so they form a laminar family.

Answer: Let F be a face of P (f). There exist S1, . . . , Sr ⊆ N such that the face F is represented as

F =

{
x ∈ P (f) :

∑
i∈Sk

xi = f(Sk), k = 1, . . . , r

}
.

From item (c), all possible pairwise intersections and unions generated from S1, . . . , Sr are implicit
equalities for F . We can apply elementary rows operations (Gaussian elimination) to create a set partition
of S1 ∪ · · · ∪ Sk whose corresponding equality constraints represent F . In other words, F = {x ∈ P (f) :∑
i∈B xi = f(B), B ∈ L} where L is

L =

B ∈ 2N : B =

( ⋂
k∈A

Sk

)⋂( ⋂
k∈A{

S{
k

)
, A ⊆ {1, . . . , r}, |A| ≥ 1

 .

Moreover, L is a laminar family because L is a set partition of S1 ∪ · · · ∪ Sk.

e) Conclude that for two integer-valued submodular functions f, g : 2N → Z, the polyhedron P (f) ∩ P (g)
is integral.

Answer: We prove that any face F of P (f)∩P (g) is integral. From item (d), if F is a face of P (f)∩P (g)
then there are laminar families L1,L2 such that

F =

{
x ∈ P (f) ∩ P (g) :

∑
i∈B1

xi = f(B1), B1 ∈ L1,∑
i∈B2

xi = g(B2), B2 ∈ L2.

}
.
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If f(B) differs from g(B) for some B ∈ L1 ∩ L2 then F is empty. Otherwise, the function given by

h(B) =

{
f(B), if B ∈ L1,

g(B), if B ∈ L2

is well-defined. Note that we can describe the face F as

F =

{
x ∈ P (f) ∩ P (g) :

∑
i∈B

xi = h(B), B ∈ L1 ∪ L2

}
.

Since the constraint matrix of
∑
i∈B xi = h(B) for all B ∈ L1 ∪ L2 is the indicator matrix of the union

of two laminar families, we have from item (b) that it is totally unimodular (TU). Hence, F is integral.

7


