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1. Let Pk = conv{(0, 0), (1, 0), (1/2, k/2)} ⊆ R2 for k ∈ Z+. Note that conv(Pk ∩Z2) = P0 for any k. Prove that
the CG closure of Pk is Pk−1 for any k ∈ N. Hint: You need to show that the inequalities defining Pk−1 are
CG inequalities of Pk, and that the extreme points of Pk−1 cannot be cut off by any CG inequality of Pk.
Your proof shows that the CG rank of Pk is k.

Answer: Below we have the inequality representation of Pk and the definition of the CG closure of Pk:

Pk =

(x1, x2) ∈ R2

∣∣∣∣∣∣
−kx1 + x2 ≤ 0,
kx1 + x2 ≤ k,

x1, x2 ≥ 0

 and (Pk)′ =
⋂

π∈Z2\{0}

{
x ∈ R2

∣∣∣∣ π>x ≤ ⌊max
x̄∈Pk

π>x̄
⌋}

.

The goal is to prove that (Pk)′ = Pk−1.

First, we prove that (Pk)′ ⊆ Pk−1. It is enough to show that −(k− 1)x1 + x2 ≤ 0 and (k− 1)x1 + x2 ≤ k− 1
are valid inequalities for (Pk)′. Indeed, consider the primal and dual optimization problems:

maxx −(k − 1)x1 + x2

s.t. −kx1 + x2 ≤ 0, (×y1)
kx1 + x2 ≤ k, (×y2)
x1, x2 ≥ 0.

= miny ky2

s.t. −ky1 + ky2 ≥ −(k − 1) (×x1)
y1 + y2 ≥ 1, (×x2)
y1, y2 ≥ 0.

One can prove using complementary slackness that (x∗1, x
∗
2) = (1/2, k/2) and (y∗1 , y

∗
2) = (1 − 1/2k, 1/2k) are

primal and dual optimal solutions. Thus, the following is a CG inequality for Pk, that is, a valid inequality
for (Pk)′:

−(k − 1)x1 + x2 ≤
⌊
−(k − 1)

1

2
+
k

2

⌋
=

⌊
k

2

⌋
= 0.

Similarly, consider the primal and dual optimization problems:

maxx (k − 1)x1 + x2

s.t. −kx1 + x2 ≤ 0, (×y1)
kx1 + x2 ≤ k, (×y2)
x1, x2 ≥ 0.

= miny ky2

s.t. −ky1 + ky2 ≥ k − 1 (×x1)
y1 + y2 ≥ 1, (×x2)
y1, y2 ≥ 0.

By complementary slackness, one can prove that (x∗1, x
∗
2) = (1/2, k/2) and (y∗1 , y

∗
2) = (1/2k, 1 − 1/2k) are

primal and dual optimal solutions. Hence, the following is a CG inequality for Pk:

(k − 1)x1 + x2 ≤
⌊

(k − 1)
1

2
+
k

2

⌋
=

⌊
k − 1

2

⌋
= k − 1.

1



Second, we prove that (Pk)′ ⊇ Pk−1. The CG inequality π>x ≤
⌊

maxx̄∈Pk
π>x̄

⌋
can only cut off fractional

extreme points of Pk, which means that we only need to verify whether the extreme point (1/2, (k − 1)/2)
of Pk−1 belongs to (Pk)′. Since Pk−1 is a subset of Pk, the valid inequalities of Pk are also valid for Pk−1.
Hence, the CG cuts π>x ≤

⌊
maxx̄∈Pk

π>x̄
⌋

that could potentially cut off (1/2, (k− 1)/2) are those such that
(x∗1, x

∗
2) = (1/2, k/2) is a maximizer of maxx̄∈Pk

π>x̄. Others CG cuts for which (1, 0) or (0, 0) are maximizers
of maxx̄∈Pk

π>x̄ are valid cuts for Pk.

We now describe the set of integral coefficients π ∈ Z2\{0} such that (1/2, k/2) is primal optimal. Indeed,
consider the primal and dual optimization problems:

maxx π1x1 + π2x2

s.t. −kx1 + x2 ≤ 0, (×y1)
kx1 + x2 ≤ k, (×y2)
x1, x2 ≥ 0.

= miny ky2

s.t. −ky1 + ky2 ≥ π1 (×x1)
y1 + y2 ≥ π2, (×x2)
y1, y2 ≥ 0.

If (x∗1, x
∗
2) = (1/2, k/2) is primal optimal then by complementary slackness we have that (π1, π2) must have

the form:
π1 = −ky1 + ky2,
π2 = y1 + y2,

y1, y2 ≥ 0,

for some (y1, y2) ∈ R2. In particular, we have that π2 ≥ 1 otherwise if π2 = 0 then π1 = 0 as well. Thus, the
left-hand side of the cut π>x ≤

⌊
maxx̄∈Pk

π>x̄
⌋

evaluated at (1/2, (k − 1)/2) is of the form

π1

2
+
k − 1

2
π2 =

−ky1 + ky2

2
+

(k − 1)y1 + (k − 1)y2

2
=
−(y1 + y2) + 2ky2

2

≤ −1

2
+ ky2 ≤ bky2c.

The last inequality −1/2 + ky2 ≤ bky2c holds because ky2 = (π1 + kπ2)/2, so if ky2 is not integer then its
fractional part is 1/2. The right-hand side of the cut π>x ≤

⌊
maxx̄∈Pk

π>x̄
⌋

is⌊
π1

2
+
k

2
π2

⌋
=

⌊
−ky1 + ky2

2
+
ky1 + ky2

2

⌋
= bky2c .

Hence, (Pk)′ ⊇ Pk−1.

2. For n odd, consider

minx0 s.t. x0 + 2

n∑
i=1

xi = n, x ∈ {0, 1}n+1. (1)

a) Prove that a branch-and-bound algorithm that branches on individual variables needs to evaluate expo-
nentially many nodes to solve this problem.

Answer: Consider the linear relaxation of the original problem (1) with right-hand side n replaced by k
and l variables:

ν(k, l) = min x0

s.t. x0 + 2
∑l
j=1 xj = k,

0 ≤ xj ≤ 1, j = 1, . . . , l.

(2)

Suppose that k is an odd integer. Then, we have a few possibilities:

• If 2l + 1 > k then ν(k, l) = 0 and every optimal solution x∗ ∈ [0, 1]l to (2) must have a fractional
coordinate.

• If 2l + 1 = k then the only feasible solution is xj = 1 for every j. In particular, ν(k, l) = 1.

• If 2l + 1 < k then (2) is infeasible and ν(k, l) = +∞.
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In summary, we have that

ν(k, l) =


0, if 2l + 1 > k,

1, if 2l + 1 = k,

+∞, if 2l + 1 < k.

The best possible upper bound for the original integral problem (1) is 1, which is the optimal value. The
branch-and-bound algorithm that branches on individual variables will

(1) Initialize a queue of nodes with the root node, that is, the linear relaxation ν(n, n) of the original
problem (1).

(2) Pop a node ν(k, l) from the queue and solve the corresponding linear relaxation problem.

(3) • If ν(k, l) equals the upper bound 1 then the algorithm stops with a certificate of optimality.

• If ν(k, l) = +∞ then go to step (2).

• Otherwise, the optimal solution x∗ of the linear relaxation problem ν(k, l) is fractional and the
branch-and-bound add the node subproblems induced by the additional equality constraints xj =
0 and xj = 1, where j is the fractional optimal solution coordinate. By relabeling the variables,
this is equivalent to append the subproblems like (2) with optimal values ν(k, l − 1) and ν(k −
2, l − 1) to the queue. Go to step (2).

The data structure of the branch-and-bound subproblems is clearly a binary tree. Moreover, if the
traversal of the binary tree is the Depth-First search, that is, we solve all the subproblems of each level
of the binary tree before we move to the next level, then one requires to visit all the nodes of the first
(n+1)/2 levels to find the optimal solution. This is because only after the number of variables is reduced
to (n − 1)/2 that the algorithm stops. Hence, it requires to evaluate at least 2(n+1)/2−1 nodes to solve
this problem.

b) Give a CG cut that allows the algorithm to solve the problem at the root node.

Answer: The equality constraint x0 + 2
∑n
j=1 xj = n and the non-negativity constraint on x0 implies

the valid constraint
∑n
j=1 xj ≤ n/2. Since n/2 is fractional we get the CG cut

n∑
j=1

xj ≤ (n− 1)/2. (3)

The linear relaxation of the original problem (1) with the CG-cut (3) has optimal value 1 and integral
optimal solution. Indeed, consider the primal and dual linear programs:

minx x0

s.t. x0 + 2
∑n
i=1 xi = n, ×(w)∑n

i=1 xi ≤
n−1

2 ×(z)
xj ≤ 1, ×(yj),

j = 1, . . . , n.

and

maxw,z,y nw + n−1
2 z +

∑n
j=0 yj

s.t. w + y0 ≤ 1, ×(x0)
2w + z + yj ≤ 0, ×(xj)

j = 1, . . . , n,
w ∈ R, z ≤ 0, yj ≤ 0, j = 1, . . . , n.

Let r = (n− 1)/2 and note that the following are primal x∗ and dual feasible solutions (w∗, z∗, y∗) with
objective values equal to 1:

x∗j =

{
1, if 0 ≤ j ≤ r,
0, if j ≥ r + 1.

, w∗ = 0, z∗ = 0, y∗j =

{
1, if j = 0,

0, if j ≥ 1.

Hence, the CG cut (3) solves the problem at the root node.

3. Consider a knapsack set S =
{
x ∈ {0, 1}n :

∑n
i=1 aixi ≤ b

}
. Suppose the first k < n items form a minimal

cover, and relabel them so a1 ≤ · · · ≤ ak. This implies
∑k
i=1 xi ≤ k−1 is a valid cover inequality for conv(S).
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a) Define the function

γ̃(z) = max

k∑
i=1

xi s.t.

k∑
i=1

aixi ≤ b− z,
k∑
i=1

xi ≤ k − 1, x ∈ [0, 1]k.

Define α̃i = k − 1− γ̃(ai) for i > k. Prove that the inequality

k∑
i=1

xi +

n∑
i=k+1

α̃ixi ≤ k − 1

is valid for conv(S). Note that the coefficients in the inequality do not depend on the order of the items
k + 1, . . . , n.

Answer: First, the value function γ̃ is concave. By Strong Duality, the value function γ̃ can be
represented as the minimum of affine functions on z, and the minimum of concave functions is concave.

Second, the function defined as α̃(z) = k− 1− γ̃(z) is convex and superadditive on R+, where the latter
property is α̃(z1)+ α̃(z2) ≤ α̃(z1 +z2), for every z1, z2 ≥ 0. Since γ̃ is concave we have that −γ̃ is convex,
so α̃ is a convex function. Also, given z1, z2 ∈ R+, we have that

α̃(z1) + α̃(z2) = α̃

(
(z1 + z2)

z1

z1 + z2

)
+ α̃

(
(z1 + z2)

z2

z1 + z2

)
≤ z1

z1 + z2
α̃ (z1 + z2) +

z2

z1 + z2
α̃ (z1 + z2)

= α̃ (z1 + z2) .

We prove that the inequality described in the statement of this question is valid for conv(S). Let x ∈ S
and let I(x) :=

{
i | xi = 1, i ≥ k + 1

}
. Then,

k∑
i=1

xi +

n∑
i=k+1

α̃ixi =

k∑
i=1

xi +
∑
i∈I(x)

α̃(ai)

≤
k∑
i=1

xi + α̃

( ∑
i∈I(x)

ai

)

=

k∑
i=1

xi − γ̃

( ∑
i∈I(x)

ai

)
︸ ︷︷ ︸

≤0

+k − 1

≤ k − 1,

where the last inequality follows from the definition of the value function γ̃ since (x1, . . . , xk) is a feasible
solution to the corresponding linear program with z =

∑
i∈I(x) ai.

b) Prove that the inequality
k∑
i=1

xi +

n∑
i=k+1

bai/akcxi ≤ k − 1

is a CG inequality of conv(S). Hint: You can use γ̃.

Answer: Let x ∈ S. In particular, we have that
∑n
i=1 aixi ≤ b and xi ≤ 1, for all 1 ≤ i ≤ n. Because the

first coefficients k are ordered a1 ≤ · · · ≤ ak, we obtain the inequality
∑k−1
i=1 (ak − ai)xi ≤

∑k−1
i=1 ak − ai.

By summing the latter with the knapsack inequality
∑n
i=1 aixi ≤ b, we have the following relations:

k∑
i=1

akxi +

n∑
i=k+1

aixi ≤ b+

k−1∑
i=1

ak − ai ⇐⇒
k∑
i=1

xi +

n∑
i=k+1

ai
ak
xi ≤

b−
∑k−1
i=1 ai
ak

+ k − 1.
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By taking the floor function of ai/ak we get a valid inequality for conv(S),

k∑
i=1

xi +

n∑
i=k+1

⌊
ai
ak

⌋
xi ≤

b−
∑k−1
i=1 ai
ak

+ k − 1,

and by rounding down the right-hand side we obtain a CG inequality for conv(S)

k∑
i=1

xi +

n∑
i=k+1

⌊
ai
ak

⌋
xi ≤

⌊
b−

∑k−1
i=1 ai
ak︸ ︷︷ ︸
∈[0,1)

+k − 1

⌋
= k − 1.

The fact that (b −
∑k−1
i=1 ai)/ak belongs to [0, 1) follows from the minimal cover assumption, that is,∑k−1

i=1 ai ≤ b and
∑k
i=1 ai ≥ b+ 1.
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